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The second-order DFT approach of Schreckenbach and Ziegler to the computation of EPRg tensors of doublet
radicals (J. Phys. Chem. A1997, 101, 3388), has been generalized to arbitrary spatially nondegenerate electronic
states. The new technique is applied to a large number (47) of diatomic main-group radicals, innΣ (n > 2)
ground states. Calculated principal components, of the EPRg tensors, are in a good agreement with experiment
for main group radicals, with the average errors approaching the accuracy available in experimental matrix
isolation studies (VWN average absolute error: 3.8 ppt). The agreement with experiment deteriorates for the
mixed, main group-transition metal radicals (VWN error: 8.1 ppt) but the major trends in∆g⊥ values are
still reproduced. The approach largely breaks down for radicals containing chemical bonds between two
transition metal atoms (VWN error: 30 ppt). In all cases, the calculatedg tensors are insensitive to the
choice of the approximate exchange-correlation functional, with the simple VWN LDA, and gradient-corrected
BP86 and RPBE functionals, giving essentially identical results. As an example of the possible future
applications of the technique, we examine theg-tensor of the first3Bu excited state of the trans-
(CNSSS)2

2+ cation. Our calculations for this systems agree well with the experimental results, both for the
magnitudes, and for the orientations of the principal components.

1. Introduction

Electron paramagnetic resonance (EPR), and related tech-
niques, provide an important source of information in experi-
mental studies of systems, containing unpaired electrons.1,2 EPR
spectra are characterized by three principal parameters: EPRg
tensors describe the interaction of the unpaired electrons with
the applied magnetic field. The zero-field splitting (D) tensors
describe the interactions between the unpaired electrons in the
absence of the field. Finally, the hyperfine (A) tensors describe
the interactions between nuclear and electron magnetic moments.
Theoretical techniques for first-principles calculations of hy-
perfine tensors, and particularly their traces, have been available
for some time,3 and they have proven useful in the interpretation
of the experimental data.4 Although the theory behind theg
andD tensors has been understood early (See,5 and references
therein), accurate first-principles calculations of these quantities,
for realistic models, became possible only recently.6-13 With
the development of density functional theory (DFT)14-16

methods8,10,12it is now possible to calculate EPRg tensors for
radicals with hundreds of atoms. In favorable cases, such
calculations can capture the major changes, observed upon
chemical or structural modification of the radical,12,17-20 thus
aiding in the interpretation of the experimental results.21

Despite this progress, the gamut of radicals, whereg tensors
can be computed with first-principles techniques, is still severely
limited by the requirement of spatially nondegenerate, spin-
doublet ground state (the Kramers doublet), imposed in most
theoretical treatments. Although this restriction is not present
in the GUHF11 and INDO/S22 approaches, these techniques are
either intrinsically incapable of accounting for electron correla-
tion,11 or rely on empirical adjustable parameters to reproduce
the experimental results.22 As a consequence, EPRg tensors of
many main-group radicals and metal complexes,2,4 as well as

biological systems of current research interest,23-26 remain
largely inaccessible (but see ref 27) for first-principles calcula-
tions.

At the same time, it has been known for some time,28 that in
wave function-based approaches, the theory of EPRg tensors
allows for a simple generalization to an arbitrary spatially
nondegenerate ground state. In this work, we demonstrate that
this extension also holds for the DFT formulation of Schreck-
enbach and Ziegler.8 We present further the first DFT results
for the g tensors of a representative selection of spatially
nondegenerate high-spin radicals. Section 2 of this work dem-
onstrates the connection between the effective spin-Hamiltonian
of EPR spectroscopy and the DFT energy expression. Section
3 summarizes the computational methods, used in this study.
Section 4 gives the computational results obtained with the new
technique, and compares them to the experimental values.
Finally, section 5 presents the conclusions of the present study,
and outlines the directions for future developments.

2. Theory

Like other EPR and NMR parameters, theg tensor is defined
in terms of the phenomenological effective Hamiltonian, chosen
to reproduce the experimentally observed spectroscopic transi-
tions. First-principles calculations of theg tensor require, that
the correspondence between this effective Hamiltonian, and the
microscopic Hamiltonian, is established.

The effective spin-Hamiltonian, for a system with the
effective spinS̃ g 1/2, is given by (atomic units)4

wherege is the free-electrong-factor (ge ≈ 2.00235), andc is
the speed of light (c ≈ 137.0429). Parametersp andq (p ) q )

H̃ ) ge
1
2c

BB‚S̃̂+ p
1
2c

BB‚∆g‚S̃̂+ qS̃̂‚D‚S̃̂ (1)
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1) are used to track orders of the perturbations. HamiltonianH̃
is defined in the basis of all products of 2S̃ R, â one-electron
spin functions. The first term in eq 1 represents the Zeeman
interaction of the free electron with the magnetic field, whereas
the second term describes deviations from the free-electron
picture due to the molecular environment. In the high-field limit,
the zero-field splitting can be neglected (q ) 0 in eq 1). Under
this assumption, the spin-Hamiltonian can be rewritten as

where the coefficientsRa (a ) x, y, z) are given by

andúB is a unit vector, in the direction of the magnetic field (úB
) BB/B). A unitary transformation of the coordinate system,
defined by the Euler angles30 φ ) arctan (Rx/Ry) andθ ) arctan
((Rx

2 + Ry
2)1/2/Rz), transforms the operator in the curly braces

(eq 2) to a diagonalŜ′z operator (the choice of the remaining
Euler angle,ψ, is arbitrary)

The eigenvalues of the Hamiltonian (1) in the high-field limit
are then given by

wherek varies from-S̃to S̃, in integer increments. Eigenstates
k ) (S̃ are nondegenerate. All other eigenstates areS̃!/(S̃ -
k)!k!-fold degenerate. As long as the deviation from the free
electron remains small, eq 5a can be expanded in the first order
in p, giving

In the free-electron limit (p ) q ) 0), the two nondegenerate
eigenfunctions of the spin-Hamiltonian can be represented by
simple products of theR andâ spin functions31

We can now turn to the examination of the real, microscopic
system, described by the effective spin-Hamiltonian. In the
Kohn-Sham (KS) formulation of the density functional theory,
the KS molecular orbitals (MOs) are obtained by solving a
system of effective one-electron eigenequations

whereσ ) R, â; i ) 1...nσ (nR g nâ); and

Operatorf̂ σ
0 collects all scalar field-free terms. In its simplest

form, it is given by

where the effective potentialVeff is the sum of the nuclear
electrostatic potential, electronic Coulomb potential, and the
exchange-correlation potential.14 Operator ĥz is the electron
Zeeman operator

whereas the operatorsĥ10, ĥ01, and ĥ11 collect the remaining
terms linear in the magnetic field (ĥ10), linear in the electron
spin (ĥ01), and bilinear in both (ĥ11). In their simplest form,
these operators are given by5,8,32

where g′ ) 2ge - 2. Operatorĥ01 is the effective-potential
approximation8 to one- and two-electron spin-orbit coupling
operators, given by5

wherep̂j is the momentum operator for the electronj, summation
overA includes all nuclei in the system, and summation overj
and k implicitly includes the electron spin. The effective-
potential approximation accounts for the first two contributions
to the two-electron spin-orbit operator (the electron-nuclear
and electron-electron spin-orbit terms) but neglects the spin-
other-orbit (SOO) contribution (the last sum in eq 14). This
term is usually quite small, and decreases in importance for
heavier radicals.12,33Further contributions to eqs 10-13 appear
when additional relativistic corrections are considered.34

In the second-order approach to theg tensors, the scalar field-
free Fock operator (f̂ σ

0) is treated variationally, whereas the
remaining operators are applied perturbationally.8 Once the
zeroth-order solutions of the eigenequations 7 are obtained, the
resulting Kohn-Sham MOs can be used to construct the Slater
determinant, corresponding to the N-electron wave function of
the noninteracting KS reference system14

The spin part ofΨref forms an eigenfunction of theŜz operator
(Ŝz ) ∑jŝj,z), corresponding to an eigenvalue of (nR - nâ)/2. As
a consequence,Ψref is also an eigenfunction of the total electron
Zeeman operator, (ge/2c)BŜz. The only remaining requirement,

H̃ ) B
2c

(Rx
2 + Ry

2 + Rz
2)1/2{ RxS̃̂x

(Rx
2 + Ry

2 + Rz
2)1/2

+

RyS̃̂y

(Rx
2 + Ry

2 + Rz
2)1/2

+
RzS̃̂z

(Rx
2 + Ry

2 + Rz
2)1/2} (2)

Ra ) (úB‚∆g)a + geúa (3)

H̃ ) B
2c

(Rx
2 + Ry

2 + Rz
2)1/2 Ŝ′z (4)

Ẽk ) k
B
2c

(ge
2 + 2pge (úB‚∆g‚úB) + p2úB‚(∆g∆gT)‚úB)1/2 (5a)

Ẽk ) k
B
2c

(ge + p (úB‚∆g‚úB)) + O(p2) (5b)

Ψ̃+S̃(p ) q ) 0) ) R1...R2S̃ (6a)

Ψ-S̃(p ) q ) 0) ) â1...â2S̃ (6b)

f̂ σ
KSψσi ) εσiψσi (7)

f̂ σ
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∂ rb
‚BB)} (13)
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necessary to establish the relationship betweenΨ̃+S̃ andΨref,
is that Ψref corresponds to the largest projection of the total
spin on the Z axis in this system. This property can be
guaranteed by requiring that the spatial MOsψRi and ψâi are
identical for all i (the spin-restricted approximation).29 A less
severe, but still sufficient constraint, is to require thatΨref is
an eigenfunction of theŜ2 operator (Ŝ2 ) (∑jŝj)2), with an
eigenvalue of (nR - nâ)(nR - nâ + 2)/4. Although, formally,
this property is not guaranteed in spin-unrestricted calculations,
the Ŝ2 expectation values of the DFT reference wave function
are often close to this ideal value.35

With the correspondence betweenΨ̃+S̃ andΨref established,
we require that the derivatives of the microscopic and effective
energy levels, with respect to the magnetic field strength, must
coincide

whereEKS is the total energy functional, corresponding to the
solutions of the Kohn-Sham eigeneq 7.14 After examining eq
16 for different orientations of the magnetic fieldúB, and
substituting (nR - nâ)/2 for S̃, we obtain

The separation of the off-diagonal∆gst and∆gts contributions
in eq 17 is arbitrary because the eigenvalues of the phenom-
enological Hamiltonian (eq 5b) can only depend on their sum.
Except for the factor (nR - nâ)-1, eq 17 is identical to the DFT
expression for∆gst of Kramers-type radicals, employed by
Schreckenbach and Ziegler.8 The derivation of the final working
expressions for the individual∆g tensor components, starting
from the operators 11-13, relies on the spin-field reduction.29

Because both the derivation and the final equations are
completely analogous to the results obtained for the spin-doublet
case,8 they need not be duplicated here.

It should be emphasized that eq 17 is an approximation, which
relies on several assumptions. First of all, it is assumed that the
(unknown) zeroth-order N-electron wave function of the real
interacting system,Ψreal, rather than the noninteracting wave
function Ψref discussed above, is an eigenfunction of theŜ2

operator. Additionally, our implementation ignores the current
dependency of the exchange-correlation functional, neglects the
higher-order effects of the spin-orbit coupling operator, and
assumes that the SOO contributions in eq 14 are negligible.
Given these approximation, the validity of eq 17 should be
judged only by its its performance in reproducing the experi-
mentalg values of high-spin radicals.

In passing, we note that is was recently suggested12 that the
exactresults for the spin-orbit coupling operator in the real,
interacting system, can be obtained by evaluating the matrix
elements of the two-electron operator 14, between the non-
interacting reference wave function (eq 15) and the correspond-
ing singly excited Slater determinants. Obviously, this can only
be true if the noninteracting wave functionΨref is identical to
the (unknown) interacting N-electron wave functionΨreal. As
a consequence, the approach of ref 12 to the spin-orbit matrix
elements, in fact, constitutes an approximation. The conse-
quences of this approximation can be examined from the well-

understood14,36properties of the exchange-correlation (XC) holes
in the noninteracting reference and in the real, interacting
system. By definition, the XC hole of the reference system does
not contain any correlation contributions. In the interacting
system, the correlation contribution reduces the probability of
the close contact between the electrons but increases it at larger
separations.36 From the form of the two-electron part of the SO
coupling operator (second sum in eq 14), which is dominated
by close inter-electronic contacts, neglect of the correlation
contribution to the XC hole should lead to excessively large
two-electron contributions. The approximation 12, which in-
corporates the complete exchange-correlation potential intoVeff,
properly accounts for the shape of the complete XC hole of the
real, interacting system and does not suffer from this problem.
At the same time, the direct application of eq 14 to the KS
reference wave function allows incorporation of the spin-other-
orbit contributions. On the balance, the approximation of ref
12 is likely to lead to superior results for systems, where
correlation gives a negligible contribution to the shape of the
XC hole, whereas the SOO terms are significant. At the same
time, the effective potential approximation (eq 12) should be
superior for systems exhibiting strong correlation effects.

3. Methods

All calculations are based on DFT,14-16 and were performed
with the Amsterdam density functional (ADF) program
package,37-39 using Cartesian space numerical integration40 and
analytical gradients for the geometry optimization.32,41 The
implementation of the EPRg tensors, due to Schreckenbach
and Ziegler,8 was extended to allow treatment of high-spin
radicals, as discussed above. An uncontracted, triple-ú basis of
Slater-type orbitals was employed for the (n - 1)f (if present),
ns,np, nd, (n + 1)s, and (n + 1)p valence shells of the transition
metal elements and the (n - 1)d (if present),ns, andnp shells
of the main group elements. The basis set was augmented by a
set of polarization functions for main-group elements, and is
designated as the standard basis set IV42 in ADF. Inner shells
were treated within the frozen core approximation.38 To test
convergence of the results, with respect to the basis set size,
EPRg tensor in one system (V2

+) was also computed using an
extended basis set of triple-ú, double polarization quality. In
this case, the standard basis IV was augmented with two 4d
basis functions (ú ) 1.70, 1.08) and two 4f basis functions (ú
) 5.20, 2.43). The single 4p polarization function of the standard
basis set was replaced with two 4p functions (ú ) 1.58, 0.95).
The extended basis set is designated as IV′. In all calculations,
scalar relativistic effects were included within the quasi-
relativistic framework43 employing relativistic frozen core
potentials, in conjunction with the first-order Pauli Hamiltonian.
Molecular geometries were fully optimized using BP8644,45

generalized gradient approximation (GGA) functional. Opti-
mized molecular geometries are included in the Supporting
Information. EPRg tensors were computed using VWN46 local
density approximation (LDA) functional as described else-
where.8,34 For comparison, theg tensors were also evaluated
with BP8644,45 and RPBE47-49 gradient-corrected functionals.
The latter functional was recently demonstrated to provide a
significant improvement,50 over both LDA and “classical”
GGAs, in calculation of atomization energies. All calculations,
both in geometry optimization and in the evaluation of theg
tensors, employed spin-unrestricted wave functions. In all cases,
the experimental spin multiplicities were used in the calculations.
A special care was taken to ensure that, for linear molecules,
SCF solutions converge to axially symmetric charge distribu-

S̃

2c
(ge + (úB‚∆g‚úB)) )

∂Ẽ+S̃

∂B
|
B)0

)
∂EKS

∂B
|
B)0,s ) 1/2

)

1

2

∂
2EKS

∂B∂s
|
B)0,s ) 0

)
1

2
∑
s,t

úsút

∂
2EKS

∂Bs∂st

|
B)0,s ) 0
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∆gst ) 2c
(nR - nâ)

∂
2EKS

∂Bs∂st
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tions, expected from the spatially nondegeneratenΣ electronic
ground states in these radicals.

4. Results and Discussion

To examine the performance of the new approach, we
compared the experimental and calculated EPRg tensors for
selected diatomic high-spin radicals. A large body of reliable
experimental data for such radicals, covering a substantial
fraction of the periodic table, is available.4 These experimental
values were obtained in inert gas matrices, or in gas phase,
which should reduce the environmental influences. Typically,
g tensors measured in inert matrices agree with gas-phase results
to within a few ppt, with larger deviations observed for heavy
and easily polarizable molecules4 (Also see refs 51-54). Most
of the gas-phase∆g⊥ values were computed from the experi-
mental spin-rotational parameters, with the use of the Curl’s
equation.55,56The∆g⊥ values, computed from the Curl’s relation,
are usually in a good agreement with the results of the direct
experimental measurements of theg tensor components.4

Because the present technique is limited to spatially nondegen-
erate electronic states, only radicals innΣ (n > 2) ground states
were included in this study.

In linear molecules, only two distinct principal components
of the g tensor are allowed by symmetry. The principal
component, oriented along the molecular axis, is designated as
g|. The doubly degenerate component, in a direction perpen-
dicular to the molecular axis, isg⊥. Instead of theg values, it
is convenient to work with the deviations from the free-electron
valuesge, defined as

For the radicals considered in this study, magnitudes of the∆g
values vary from ca. 10-3 to 0.1, and can, therefore, be
conveniently expressed in parts per thousand (ppt).

In homonuclearnΣ diatomics, the paramagnetic contribution
to the∆g|, which usually dominates deviations from the free-
electron value, vanishes by symmetry.4 Although not exactly
zero, this contribution is typically quite small in heteronuclear
diatomics as well. As a consequence,∆g| values for all diatomic
radicals, included in this study, are dominated by the (small)
relativistic mass-velocity correction. All calculated∆g| values
are in the range of-0.3 to 0.0 ppt. Where available, the
experimental∆g| values are also rather small. In fact, the
analysis of the experimental EPR spectra, fornΣ radicals,
frequently assumes that the value is negligible.4 Therefore, we
will not show any results for∆g|, and will not discuss these
values any further.

Calculated VWN, BP86, and RPBE∆g⊥ values, for 47nΣ
radicals, are collected in Table 1, in comparison with the
available experimental data. The statistical evaluation of the
results is given in Table 2. The results clearly separate into three
distinct categories, depending on the nature of the radical. For
main group radicals, calculated∆g⊥ values are, generally, in a
good agreement with experiment, as can be seen from the
correlation diagram (Figure 1). For more than half of the radicals
(10 out of 19), calculated and experimental values agree to
within 1 ppt. The average absolute error, for this class of
radicals, is 3.8 ppt (VWN). Notably, gradient-corrected func-
tionals so not improve significantly upon the LDA results, with
the average errors of 3.4 (BP86) and 3.5 ppt (RPBE). The

individual ∆g⊥ values, calculated with all three functionals, are
also essentially identical (Table 1).

The worst outliers on the main group∆g⊥ correlation plot
are SeO (VWN: +18, expt: +33 ppt), Ge2

+ (VWN: -50,
expt:-63 ppt) and isoelectronic GaAs+ (VWN: -22, expt:-5
ppt), and NI (VWN: +44, expt: +31 ppt). For the3Σ selenium
oxide, the experimental error is estimated at≈11 ppt, or1/3 of
the experimental value.57 Taking a value at the lower side of
the experimental error bar (+22 ppt), would lead to a much
better agreement with the calculated result. For the Ge2

+ cation,
the situation is more interesting. The Ge-Ge chemical bond in
this radical is quite weak, despite the formal 1.5 bond order
(Figure 2, upper panel), whereas the calculated∆g⊥ component
exhibits a strong dependence on the interatomic distance (the
lower panel). The optimized BP86 geometry, used in our

∆g| ) g| - ge (18a)

∆g⊥ ) g⊥ - ge (19b)

TABLE 1: Calculated VWN, BP86, and RPBE ∆g⊥ Values
(in ppt), for High-Spin nΣ (n > 2) Diatomic Radicals, in
Comparison with Experimental Results

molecule na VWN BP86 RPBE expt reference

B2 3 0.3 0.2 0.2 -0.8 61
O2 3 3.3 3.1 3.1 2.9b 62
SO 3 4.8 4.6 4.6 3.6b 63
SeO 3 18.2 17.9 17.6 32.7b,c 57
S2 3 12.6 12.1 11.9 14.5b 4
NH 3 1.9 1.5 1.5 1.7b 4
NF 3 2.2 2.0 2.0 2.0b 64
NCl 3 5.6 5.0 4.9 5.4b 65
NBr 3 24.2 21.8 21.3 19.3b 66
NI 3 43.6 38.9 38.2 31.0b 67
PH 3 4.8 4.1 4.0 4.5b 4
BC 4 0.1 -0.1 -0.1 -0.3 68
C2

+ 4 -0.6 -0.6 -0.6 -0.5 69
AlC 4 -1.4 -1.4 -1.3 -1.3 70
Si2

+ 4 -6.0 -5.9 -5.8 -9.3 52
Ge2

+ 4 -50.4 -49.2 -47.7 -63.3 52
SiB 4 -1.1 -1.2 -1.1 -1.8 71
SiAl 4 -3.8 -3.7 -3.6 -4.5 71
GaAs+ 4 -21.9 -20.3 -19.0 -4.5 72
VO 4 -21.4 -18.1 -15.8 -21.9 73
CrN 4 -5.3 -5.0 -3.2 -5.6b 74
MoN 4 -4.6 -4.2 -4.6 -10.9b,d 74
YB+ 4 -35.3 -28.1 -29.9 -42.3 75
YAl + 4 -72.1 -52.9 -47.1 -60.3 75
NbO 4 -30.7 -27.7 -25.9 -44.6 76
CrH 6 -4.4 -4.6 -7.6 2.7 4
CrF 6 -12.8 -11.0 -10.7 -1.3 4
MnO 6 2.5 2.5 2.0 -7.3 4
MnS 6 11.4 10.2 10.0 6.7 4
MnH 7 -2.0 -2.0 -2.4 -1.3 4
MnF 7 0.3 0.1 -0.3 -1.3 4
MnCl 7 1.3 0.9 0.3 -7.3 4
MnBr 7 6.1 5.1 3.3 -9.3 4
MnI 7 12.5 10.7 8.8 -9.3 4
V2

+ 4 -11.4 -11.3 -10.9 -46.3 54
TiV 4 -14.3 -15.1 -15.1 -24.3 77
TiNb 4 -21.3 -26.7 -27.5 -73.8 77
ZrV 4 -20.7 -21.7 -22.3 -41.3 77
ZrNb 4 -34.7 -37.5 -37.5 -98.8 77
HfV 4 -57.8 -55.8 -55.0 -93.8 77
CrAg 6 -1.0 -1.3 -1.3 1.7e 78
WCu 6 -67.7 -58.4 -51.1 -106.3 78
WAg 6 -78.5 -65.2 -59.8 -106.3 78
WAu 6 -35.9 -29.4 -24.9 -92.3 78
CrAu 6 29.6 25.0 24.1 -1.3 78
MnAg 7 4.2 3.5 3.3 -4.3 4
Mn2

+ 12 2.4 2.0 8.9 -3.3 79

a Term multiplicity. b Estimated from gas-phase rotational param-
eters, using Curl’s relation.55,56 c Estimated error bar(11 ppt.d An
alternative experimental value of-33 ppt, measured in Ne matrix, was
also reported.80 e An alternative experimental value of-52 ( 3 ppt,
measured in Ar matrix, was also reported.4
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g-tensor calculations, was obtained in the gas phase. At the same
time, the experimental EPR measurement was performed in solid
Ne matrixes,52 where bond lengths may be influenced by
environmental effects. Elongation of the Ge-Ge bond, from
the optimized gas-phase value of 2.46 Å, to approximately 2.7
Å, would bring the calculated∆g⊥ value (-59 ppt) into a good
agreement with experiment (-63 ppt). According to BP86
calculations, such elongation would require only 3.5 kcal/mol

in the gas phase. Additionally, BP86 calculations indicate the
presence of an electronically excited2Σ state within 0.5 eV of
the 4Σ ground state of Ge2

+. Contributions, due to these states,
can influence the calculatedg tensors through second-order
spin-orbit coupling effects, neglected in our calculations. Such
effects are known to be important for the accurate description
of properties in some of the high-spin diatomic radicals.58

Higher-order contributions are likely to be responsible for
the large error found for NI as well. In this respect, it is
instructive to examine the isovalent series of3Σ radicals,
consisting of NH, NF, NCl, NBr, and NI (Table 1). For the
first three members of the series, calculated∆g⊥ values agree
with experiment, to within the accuracy expected from the
Curl’s4,55 relation. At the same time, the calculated∆g⊥ values
for NBr are noticeably too large (VWN: 24 ppt, expt: 19 ppt).
For the heaviest member of the series, NI, the calculated∆g⊥
values are clearly too positive, by about a third (VWN: 44 ppt,
expt: 31 ppt). The importance of the second-order spin-orbit
coupling effects is expected to increase in the same series.

The quality of the theoretical results deteriorates noticeably
for the mixed, main group-transition metal radicals. The
average absolute deviation (VWN: 8.1 ppt) from experiment,
for such radicals, increases by more than a factor of 2, compared
to the main group systems (VWN: 3.8 ppt). All three functionals
examined perform equally well (see Table 2). With one
exception, the calculated∆g⊥ values still show a reasonable
correlation with the experimental results (Figure 3). Nonetheless,
some qualitative failures become also apparent. Thus, the
experimental∆g⊥ valuesdecreasein the MnX series MnH≈
MnF > MnCl > MnBr ≈ MnI. On the other hand, the calculated
∆g⊥ values actuallyincreasein the same series, with the largest

TABLE 2: Statistical Evaluation of the Performance of
VWN, BP86, and RPBE Exchange-Correlation Functionals,
in Calculation of the ∆g⊥ Values of High-Spin Diatomic
Radicals

all MG-MGa TM-MGa TM-TMa

data points 47 19 15 13
range, ppt 138 95 67 108
VWN

ave.b 9.6 0.3 3.9 29.5
abs.c 12.4 3.8 8.1 29.9
RMSd 20.0 6.7 10.1 35.6

BP86
ave.b 10.4 0.0 6.0 30.7
abs.c 12.7 3.4 8.3 31.1
RMSf 20.7 6.2 10.1 37.1

RPBE
ave.b 10.9 0.0 6.0 32.4
abs.c 13.3 3.5 8.8 32.9
RMSd 21.7 6.3 10.3 39.0

a MG ) main group atom; TM) transition metal atom.b Average
signed error, in ppt.c Average absolute error, in ppt.d Root-mean-square
error, in ppt.

Figure 1. Correlation between calculated (VWN) and experimental
∆g⊥ values, for main group diatomic radicals. Diagonal line represents
the perfect agreement between theory and the experiment. The lower
panel gives the expanded view of the central part of the correlation
diagram. The radicals, for which deviations from the experiment exceed
1 ppt, are indicated by the arrows.

Figure 2. Calculated (BP86) potential energy (upper panel) and∆g⊥

values (lower panel), for the lowest4Σ state of Ge2
+, as functions of

the interatomic distance.
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deviations from the experiment found for the heavier halogens
X (Br and I). A combination of the higher-order SO coupling
effects, and the increased importance of the environment for
larger halogen atoms, is likely responsible for this failure. In
previous studies of doublet metal radicals,12,18,19deviations from
the experiment were also found to increase for heavier metal
centers. Unfortunately, our present data set is not sufficiently
large to verify whether this observation applies to high-spin
radicals.

Finally, the correlation between the experimental and calcu-
lated∆g⊥ values largely breaks down for the transition metal
diatomic radicals (Figure 4). Although the calculations seem to
follow the gross trends in∆g⊥, calculated values are systemati-
cally too positive, with deviations increasing for larger∆g⊥
magnitudes. Again, the choice of the density functional does
not appear to be important, with both VWN LDA and GGAs,
leading to similar, poor results. The average absolute errors for
all three functionals are 30 ppt or more, compared to the total
experimental range of 108 ppt. Calculated∆g⊥ values, in
transition metal diatomics, appear to be reasonably converged
with respect to the basis set size. Thus, BP86 calculations on
V2

+, using the extended IV′ basis set, give∆g⊥ ) -11.0 ppt,
compared to-11.3 ppt for the smaller basis IV.

Although disappointing, this failure is not entirely unexpected.
Transition metal diatomics are known to possess a multitude

of close-lying electronically excited states, and therefore, present
a severe challenge to both approximate DFT and ab initio
techniques.35,59 The difficulties, encountered in calculations,
aiming at the prediction of molecular structures and atomization
energies are exacerbated in EPRg-tensor calculations, due to
their sensitivity to the energies and shapes of the Kohn-Sham
MOs, in the vicinity of the singly occupied MOs.

Overall, our results suggest that density functional theory
calculations can predict EPRg-tensors of light, main-group
radicals with the accuracy comparable to a routine experimental
measurement. It can also provide an indication of trends and
approximate magnitudes ofg tensor components, for radicals
containing heavier nuclei, including transition metals, provided
that no metal-metal bonds are involved.

To further illustrate the practical utility of DFT calculations,
in the analysis of theg-tensors of high-spin radicals, we consider
a somewhat more involved case,trans-(CNSSS)2

2+. This sys-
tem provides a rare example of a thermally accessible excited
triplet state (of the3Bu symmetry), for which a meticulous
experimental measurement of the complete EPRg- and D-
tensors is available.60 Calculated VWN, BP86, and RPBE∆g
tensor components, and their orientations, relative to the local
coordinate system of (CNSSS)2

2+, are given in Table 3, in
comparison with the experimental results. As already seen for
the diatomic radicals, the choice of the density functional
influences the results only marginally. Calculated magnitudes
of the principal components are in a good agreement with
experiment (VWN:∆g1 ) -0.7, ∆g2 ) +13.2,∆g3 ) +21.6
ppt; expt:∆g1 ) -0.1 ( 0.1, g2 ) +14.8( 0.2, g3 ) +24.8
( 0.2). Because of the high symmetry of the cation, only one
orientational parameter, the angle between the CdC bond
direction and the orientation of the largest principal component
(g3), is not determined a priori. For this parameter, the calculated
value (VWN: 21°) agrees well with the experimental result (16
( 2°).

5. Conclusions and Outlook

We have shown, that the second-order DFT approach to the
EPR g-tensors, originally developed by Schreckenbach and
Ziegler for doublet Kramers-type radicals,8 can be generalized
easily, allowing treatment of arbitrary radicals in spatially
nondegenerate electronic states. The new technique is applied
to a large number (47) of diatomic main-group radicals, innΣ
(n > 2) ground states. Calculated principal components of the
EPR g tensors are in a good agreement with experiment for
main group radicals, with the average errors approaching the
accuracy available in experimental matrix isolation studies
(VWN average absolute error: 3.8 ppt). Deviations from
experiment tend to increase for heavier elements, with the best
results obtained for radicals from the first three rows of the
periodic table.

Figure 3. Correlation between calculated (VWN) and experimental
∆g⊥ values, for the mixed transition metal-main group radicals.
Diagonal line represents the perfect agreement between theory and the
experiment. The radicals, for which deviations from experiment exceed
1 ppt, are indicated by the arrows.

Figure 4. Correlation between calculated (VWN) and experimental
∆g⊥ values, for the transition metal diatomic radicals. Diagonal line
represents perfect agreement between theory and experiment. The
radicals, for which deviations from the experiment exceed 1 ppt, are
indicated by the arrows.

TABLE 3: Comparison of the Calculated and
Experimental60 ∆g⊥ Tensors for (CNSSS)2

2+

VWN BP86 RBPE expt

∆g1
a, ppt -0.7 -0.7 -0.6 -0.1( 0.1

∆g2
b, ppt +13.2 +13.1 +13.1 +14.8( 0.2

∆g3
b, ppt +21.6 +21.2 +21.2 +24.8( 0.2

γ3,c degree +20.6 +20.4 +20.5 +16 ( 2

a Component in the direction perpendicular to the molecularσh plane
of symmetry.b Component within theσh plane.c Angle between the
∆g3 component, and the direction of the C-C bond. Positive no.s
indicate displacements toward the C-S bond, and away from the C-N
bond of the cation. All other orientational parameters are fixed by
symmetry.
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The agreement with experiment deteriorates somewhat for
the mixed, main group- transition metal radicals (VWN
error: 8.1 ppt), but the major trends in∆g⊥ values are still
reproduced. The approach largely breaks down for radicals,
containing chemical bonds between two transition metal atoms
(VWN error: 30 ppt). In all cases, the calculatedg tensors are
insensitive to the choice of the approximate exchange-correlation
functional, with simple VWN LDA, and gradient-corrected
BP86 and RPBE functionals, leading to essentially identical
results.

At least in some cases, the failure of the calculations can be
attributed to the neglect of the higher-order effects of the spin-
orbit coupling operator. Incorporation of these contributions may
be expected to improve agreement with the experiment for the
heavier radicals, such as NI (3Σ). Calculatedg tensor compo-
nents show a strong dependence on the bond lengths. As a
consequence, environmental and thermal effects may play a
substantial role, particularly in weakly bound radicals, such as
Ge2

+ (4Σ).
The future extensions of this work may include incorporation

of second-order spin-orbit coupling effects and a generalization
to spatially degenerate ground states. Even without such
enhancements, the present extension of the DFT techniques to
g-tensors of non Kramers-type systems exposes for the first time
a large number of experimentally interesting radicals, to a
detailed theoretical scrutiny. As an example of the possible
applications of the technique, we examine theg-tensor of the
first 3Bu excited state oftrans-(CNSSS)2

2+ cation. Our calcula-
tions for this systems agree with the experimental results to a
good accuracy, both for the magnitudes, and for the orientations
of the principal components.
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